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ABSTRACT

Diamines were found to promote catalytic conjugate addition of R-cyano active methine nucleophiles to various acrylate derivatives.

Conjugate addition of carbon nucleophiles to electron-
deficient CdC bonds is one of the most essential carbon�
carbon bond forming reactions in organic synthesis.1

Recently, catalytic use of artifically functionalized organic
amines such as cinchona alkaloid and R-amino acid deri-
vatives has been extensively studied for asymmetric con-
jugate addition reactions.2 Although R,β-unsaturated
aldehydes and ketones3 as well as vinyl sulfones4 and
nitroalkenes2e,5 are commonly employed as an electrophile
in the organic amine-catalyzed conjugate addition, utiliza-
tion of R,β-unsaturated acid derivatives, especially, simple
acrylates, is much more unprecedented.6�8 This is attrib-
utedmainly to the less electrophilic nature of acrylates and
the fact that they could not form an iminium ion bearing a
lower LUMO energy by the reaction with amino catalysts.
Therefore, analternative approach that possesses a distinct
activating function towardboth acrylates andnucleophiles
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would be needed for the conjugate addition to acrylate
derivatives.9 Herein, we report the catalytic reactivity of
diamines to promote the conjugate addition of R-cyano
activemethine nucleophiles to various acrylate derivatives.
To achieve the conjugate addition of carbon nucleophiles

to acrylates, we planned to use diamines as a catalyst
where the amines could be oriented in such a way as
to cooperatively bind a single proton from the prenucleo-
phile. It was speculated that the acid�base complex gener-
ated from the prenucleophile (Nu�H) and the diamine base
could activate acrylates electrophilically via multihydrogen
bonding10 that would result in efficient assembly of the
prenucleophile and the acrylate followed by smooth con-
jugate addition and consecutive protonation (Scheme 1).

Based on this hypothesis, we embarked on the investiga-
tion of conjugate addition reactions of 2-methylmalononi-
trile (1a) and ethyl 2-azidoacrylate (2a)11,12 with various
organic diamines to target R-azido ester derivatives, which
could be utilized as a potential precursor for R-amino
acids13 (Table 1). As expected, 1,2-diaminocyclohexanes
A�C exhibited remarkable catalytic reactivity to the con-
jugate addition at 0 �C, affording ethyl 2-azido-4,4-dicya-
nopentanoate (3aa) in good yields (Table 1, entries 1�3).
Other types of diamines were next examined (entries 4�10).
Among ethylenediamine derivatives (entries 4�8), the
reaction with N,N0-dimethylethylenediamine (DMEDA)
E was the most efficient (87% yield, entry 5), whereas that
withN,N,N0,N0-tetramethylethylenediamine (TMEDA)H
bearing two tertiary amine motifs was sluggish (entry 8).
Itwasnoteworthy thatutilizationofpropane-1,3-diamine

I led to a remarkable promotion in the reaction effeciency,
resulting in the formation of 3aa in 98% yield within 4 h
(entry 9), while butane-1,4-diamine J led to a reduction in
the yield (entry 10). In the presence of triethylenetetramine
K, the reaction was finished within 0.5 h, whereas the yield
of 3aa was moderate (entry 11). trans-1,2-Diaminocy-

clohexane-derived primary amine thiourea L (called as
bifunctional thiourea) did not promote the reaction, pro-
viding 3aa only in 28% yield even after 10 days (entry 12).
The reactions with a series of alkyl monoamines as well as
aryl amines such as aniline, 1,2-diaminobenzene, and 1,8-
diaminonaphthalene resulted in no reaction.
By utilizing organic diamines as a base, we surveyed a

variety of prenucleophiles for the conjugate addition to
ethyl 2-azidoacrylate (2a), and Table 2 lists the best diamine
catalyst for each nucleophile.14 As a substituent at C2 of
malononitirile, benzyl, phenyl, and allyl moieties could be
introduced (entries 1�3). In the case of 2-propargylmalo-
nonitrile (1e), the desired conjugate addition was followed
by intramolecular azide�alkyne cycloaddition to form
bicyclic 1,2,3-triazole 4ea in moderate yield in a one-pot
fashion (entry 4). The reaction of malononitrile bearing an
ethyoxycarbonyl functionality 1f proceeded smoothly to

Scheme 1. A Working Hypothesis

Table 1. Diamine-Catalyzed Conjugate Addition of 2-Methyl-
malononitrile (1a) and Ethyl 2-Azidoacrylate (2a)a

aReactions were carried out on the scale of 0.5 mmol of 1a and 1.5
equiv of 2a in toluene (1 mL) at 0 �C under a N2 atmosphere. b Isolated
yields. cRecovery yields of 1a. dA racemic form was utilized.
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give corresponding R-azido ester 3fa in exellent yields
(entry 5). Methyl 2-cyano-2-phenylacetate (1g) could also
be utilized for this catalytic conjugate addition, providing
3ga in good yields albeit with an almost 1:1 diastereoselec-
tivity and a longer reacton time (25 h) (entry 6).15

Next, diamine-catalyzed conjugate additions of 2-methyl-
malononitrile (1a) to a series of acrylate derivatives were
investigated, and the diamine catalyst realizing the best

yield was shown for each acrylate in Table 3.16,17 As
2-aminoacrylates, methyl 2-phthalimidoacrylate (2b)18

and ethyl 2-acetoamidoacrylate (2c)19 were examined in-
stead of 2-azidoacrylate 2a for the synthesis of R-amino
acid derivatives. The reaction of 2-phthalimidoacrylate 2b
catalyzed by primary amine catalysts, ethylenediamine D,
provided conjugate addition product 3ab in good yield
(entry 1), whereas, in the case of 2-acetoamidoacrylate
(2c), the yields of conjugate addition product 3ac were
moderate (entry 2). Ethyl 2-bromoacrylate (2d) reacted
with 1a to give R-bromo ester 3ad in 96% yield with
propane-1,3-diamine I (entry 3). Ethyl 2-phenylacrylate

Table 2. Diamine-Catalyzed Conjugate Addition to Ethyl
2-Azido Acrylate (2a)a

aReactions were carried out on the scale of 0.5 mmol of 1 and 1.5
equiv of vinyl azide 2a in toluene (1 mL) at 0 �C under a N2 atmosphere.
b Isolated yields. cThe reaction mixture was stirred at 0 �C until 1e
was consumed, before being heated at 40 �C for 10 h. dDiastereomer
ratio determined by 1H NMR. The relative stereochemistry was not
confirmed.

Table 3. 1,2-Diamine-Catalyzed Conjugate Addition of
2-Methylmalononitrile (1a) to Various Acrylates 2a

aReactions were carried out on the scale of 0.5 mmol of 1a and 1.5
equiv of 2a in toluene (1 mL) at 0 �C under a N2 atmosphere. b Isolated
yields.
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(2e) resulted in a smooth reaction with 1a, giving R-phenyl
ester 3ae in excellent yield (entry 4). It was found that
β-substituents retarded the conjugate addition. For exam-
ple, the reaction of ethyl crotonate (2f) was sluggish,
providing ethyl 4,4-dicyano-3-methylpentanoate (3af) in
26% yield even after 7 days (entry 5). Finally, conjugate
addition of 1a to ethyl acrylate (2g) was tested,20 where
propane-1,3-diamine I could complete the reaction within
3 h, leading to the formation of 3ag in almost quantitative
yields (entry 6).

We finally explored a possibility for the construction of
an R-chiral center in the conjugate addition of 2-methyl-
malononitrile (1a) to ethyl 2-phenylacrylate (2e) by using a

series of chiral diamine catalysts (M�R) as shown in

Scheme 2.21 It was found that several chiral diamines such

as (1R,2R)-1,2-diphenyl-1,2-ethanediamine (N) and (S)-

2-(N-aminomethyl)pyrrolidines (O and P) provided low

but reproducible enantioselectivities (5�8% ee). Interest-

ingly, C2-symmetric bisprolinamide Q22 showed reverse

chiral induction (�8% ee). The reaction with diamine R

derived from quinidine23 was very sluggish. Although the

obtained enantioselectivity was not practically valuable

yet, these results might uphold the working hypothesis

depicted in Scheme 1 including a certain interaction of

the prenucleophile (Nu�H) and the acrylate through

the acid�base complex of the prenucleophile and the

diamine base.
In summary, we have developed a diamine-catalyzed

intermolecular conjugate addition ofR-cyano active methine

nucleophiles to various acrylate derivatives. Further investi-

gationon thedetailed reactionmechanismandreaction scope

aswell as rational designof the catalystsbasedon thediamine

functionality for enhancing enantio- and diastereoselectivity

is currently underway and will be reported in due course.
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Scheme 2. Enantioselective Induction Using Chiral Diaminesa

aReactions were carried out on the scale of 0.5 mmol of 1a and 1.5
equiv of 2a in toluene (1 mL) at 0 �C under a N2 atmosphere. Isolated
yields.
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